

Enzyme Sugar Platform (ESP) Project

Pretreatment

Dan Schell

FY03 Review Meeting

NREL, Golden, Colorado

May 1-2, 2003

Pretreatment Outline

- Introduction
 - Technical Barriers
 - Goals
- Equipment and Methods
- Recent Results
- Other Accomplishments
- Recommendations
- Team Members

Pretreatment is Important!

- Key front-end processing step
 - -Hydrolyzes hemicellulosic sugar
 - Increases susceptibility of cellulose to enzymatic hydrolysis
 - Required to enable process integration
- Major cost center in overall economics
 - High-yield performance at low cost essential for economic feasibility

Technical Barriers Pretreatment Specific

- 1. Root cause of biomass recalcitrance
- 2. Role of biomass structure and composition on pretreatment performance
- Pretreatment process chemistries and reaction kinetics
- 4. Equipment reliability and materials of construction issues
- 5. All under realistic high-solids operating conditions

Pretreatment Work Goals

- Supplying process materials
 - Enzyme developers, co-product and combustion studies
- Address/overcome major technical barriers
 - Performance at high-solids concentrations
 - High quality carbon and mass balances (by applying new/improved analytical techniques)
 - Better understand factors affecting cellulose hydrolysis
- Findings and tools are expected to translate to other pretreatment technologies

Pilot Scale Pretreatment System

Pretreatment Outline

- Introduction
 - Technical Barriers
 - Goals
- Equipment and Methods
- Recent Results
- Other Accomplishments
- Recommendations
- Team Members

Xylose Yields

Experimental Xylose Yields

Lot 1, 20% Solids Concentration

Experimental Xylose Yields

All Lots, 20% Solids Concentration

Rigorous Performance Comparison

Pretreatment Outline

- Introduction
 - Technical Barriers
 - Goals
- Equipment and Methods
- Recent Results
- Other Accomplishments
- Recommendations
- Team Members

Impact of Pretreatment Solids Concentration

Pretreatment	Total Sugar	Monomeric	Total	Xylose Mass	Enzymatic
Solids	Concentration	Xylose	Xylose	Balance	Cellulose
Concentration		Yield	Yield	Closure	Digestibility
(wt %)	(g/L)	(%)	(%)	(%)	(%)
20	94	78	85	104	93
30	143	75	78	89	95

Pretreatment at 190°C, 0.048 g acid/g dry biomass, flow-through mode

Recently we successfully operated at 35% solid concentration

Economic Impact of Solids Concentration

Economic Impact of Solids Concentration

Reactor Feed Solids Concentation

Characterizing High-Solids Performance

Flow-through mode of operation

Measure:

- Component yields/balances
- Enzymatic cellulose conversion
- Characterize structure

Supplying External Stakeholders

2002

Material	Amount Supplied	Number of Contacts Supplied	
Raw corn stover	Over 5 tons	4	
Pretreated corn stover solids	30 kg (dry)	3	
Pretreated corn stover liquor	193 L	5	
Enzymatically- digested residue	67 kg (dry)	8	

Pretreatment Outline

- Introduction
 - Technical Barriers
 - Goals
- Equipment and Methods
- Recent Results
- Other Accomplishments
- Recommendations
- Team Members

High Priority Recommendations

- Continue to supply stakeholders
- Characterize high-solids pretreatment
 - Determine component yields/balances
 - Assess potential mass transfer limitations
 - Utilize newly developed assays for uronic acid and soluble protein to improve overall mass balance
 - High quality data necessary for accurate technoeconomic estimates
 - Identify analytical needs to improve mass closures to 100% \pm 5%
- Advance understanding of the factors controlling cellulose reactivity to enable predictive modeling
 - Explore enzyme adsorption, accessible pore volume, and other surface characterization tools

Other Recommendation

- Explore effect of corn stover compositional variability on pretreatment performance
 - Improves process modeling and uncertainty assessments
 - Assess impact on process integration

Future New Directions

- Implement new concepts for improving pretreatment performance at the pilot scale
 - Coordinate with Advance Pretreatment
 Task and input from industry-led projects

Team Members

- Pilot Plant Operation
 - Jody Farmer, Wesley Hjelm, Bob Lyons
- Sample Analysis
 - Bonnie Hames, Bob Lyons, Ray Ruiz, Amie Sluiter,
- Enzymatic Cellulose Conversion Testing
 - Nancy Dowe, Millie Newman